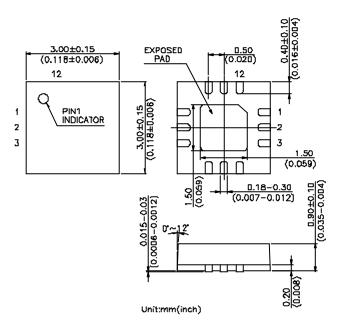


#### **Features**

. Low Insertion Loss: 0.40 dB @ 0.87 GHz

0.50 dB @ 2.5 GHz

. High Isolation: 55 dB @ 0.87 GHz


47 dB @ 2.5 GHz

- . 50 or 75 Ohm Systems
- . Low DC Power Consumption
- Miniature QFN12L (3x3 mm) Using Lead (Pb) free materials with RoHS compliant

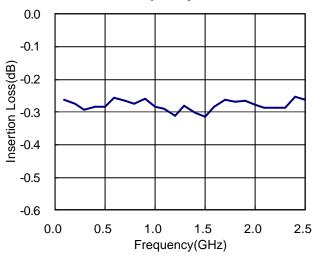
### **Description**

The HWS429 is a GaAs SPDT terminated (non-reflective) switch operating at DC-3 GHz in a low cost QFN12L (3x3 mm) plastic lead (Pb) free package. The HWS429 features low insertion loss and high isolation with very low DC power consumption and can be used in both 50 ohm and 75 ohm systems. Typical applications include CATV and basestation systems for either SPDT or SPST functions.

### QFN12L (3 x 3 mm)

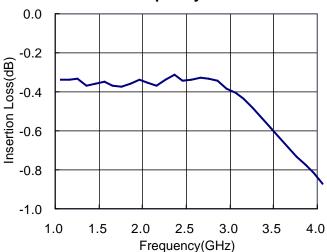


## Electrical Specifications at 25°C with 0, +3V Control Voltages, 50 Ohm system

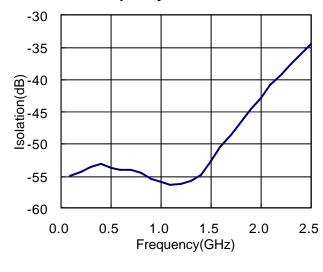

| Parameter                                         | Test Conditions           | Min. | Тур.       | Max. | Unit     |
|---------------------------------------------------|---------------------------|------|------------|------|----------|
| Insertion Loss                                    | DC-1.5 GHz<br>1.5-3.0 GHz |      | 0.4<br>0.5 | 0.8  | dB<br>dB |
| Isolation                                         | DC-1.5 GHz<br>1.5-3.0 GHz | 35   | 53<br>43   |      | dB<br>dB |
| Return Loss                                       | DC-3.0 GHz                |      | 15         |      | dB       |
| Input Power for One dB<br>Compression             | 0.5-3.0 GHz               |      | 26         |      | dBm      |
| Input Third Order Intermodulation Intercept Point | 0.5-3.0 GHz               |      | 45         |      | dBm      |
| Switching Time                                    |                           |      | 50         |      | ns       |
| Control Current                                   |                           |      | 30         | 300  | uA       |

Note: All measurements made in a 50 ohm system with related application circuits and 0/+3V control voltages, unless otherwise specified.

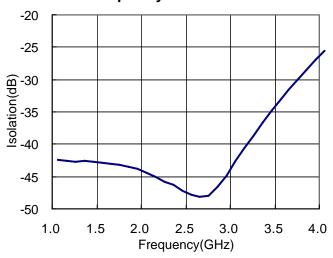



# Typical Performance Data With Application Circuit A @ +25°C

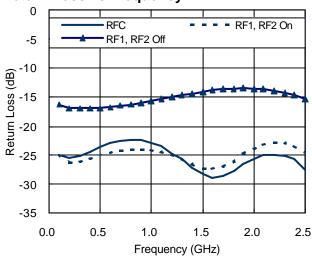
#### **Insertion Loss vs Frequency**




# Typical Performance Data With Application Circuit B @ +25°C


#### **Insertion Loss vs Frequency**




#### **Isolation vs Frequency**



#### **Isolation vs Frequency**



#### **Return Loss vs Frequency**

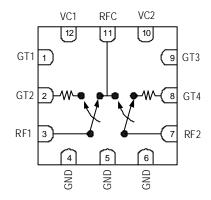


#### **Return Loss vs Frequency**



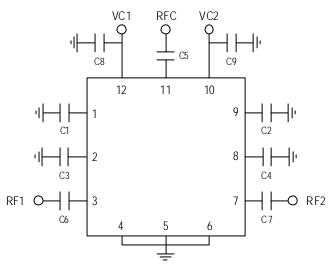


# **Absolute Maximum Ratings**


| Parameter             | Absolute Maximum |  |  |
|-----------------------|------------------|--|--|
| RF Input Power        | +32 dBm @ +5V    |  |  |
| Control Voltage       | +6V              |  |  |
| Operating Temperature | -40°C to +85°C   |  |  |
| Storage Temperature   | -65°C to +150°C  |  |  |

# Logic Table for Switch On-Path

| VC1 | VC2 | RFC-RF1        | RFC-RF2        |  |
|-----|-----|----------------|----------------|--|
| 0   | 1   | Insertion Loss | Isolation      |  |
| 1   | 0   | Isolation      | Insertion Loss |  |


<sup>&#</sup>x27;1' = +3V to +5V'0' = 0V to +0.2V

# Pin Out (Top View)



Exposed pad in the bottom must be connected to ground by via holes.

# **Application Circuits**



#### Component Values:

| Circuit | C1, C2 | C3, C4 | C5, C6, C7 | C8, C9 |
|---------|--------|--------|------------|--------|
| Α       | 47pF   | 330pF  | 1000pF     | 47pF   |
| В       | 2pF    | 4pF    | 47pF       | 47pF   |

Note: Circuit A and B are optimized for DC-1.5 GHz and 1.5-3.0 GHz, respectively.